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Abstract

Motivation: The conventional approach to personalized medicine relies on molecular data ana-

lytics across multiple patients. The path to precision medicine lies with molecular data analytics

that can discover interpretable single-subject signals (N-of-1). We developed a global framework,

N-of-1-pathways, for a mechanistic-anchored approach to single-subject gene expression data

analysis. We previously employed a metric that could prioritize the statistical significance of a

deregulated pathway in single subjects, however, it lacked in quantitative interpretability (e.g. the

equivalent to a gene expression fold-change).

Results: In this study, we extend our previous approach with the application of statistical

Mahalanobis distance (MD) to quantify personal pathway-level deregulation. We demonstrate that

this approach, N-of-1-pathways Paired Samples MD (N-OF-1-PATHWAYS-MD), detects deregulated

pathways (empirical simulations), while not inflating false-positive rate using a study with

biological replicates. Finally, we establish that N-OF-1-PATHWAYS-MD scores are, biologically sig-

nificant, clinically relevant and are predictive of breast cancer survival (P<0.05, n¼80 invasive car-

cinoma; TCGA RNA-sequences).

Conclusion: N-of-1-pathways MD provides a practical approach towards precision medicine. The

method generates the magnitude and the biological significance of personal deregulated pathways

results derived solely from the patient’s transcriptome. These pathways offer the opportunities for

deriving clinically actionable decisions that have the potential to complement the clinical interpret-

ability of personal polymorphisms obtained from DNA acquired or inherited polymorphisms and

mutations. In addition, it offers an opportunity for applicability to diseases in which DNA changes

may not be relevant, and thus expand the ‘interpretable ‘omics’ of single subjects (e.g.

personalome).

Availability and implementation: http://www.lussierlab.net/publications/N-of-1-pathways.
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1 Introduction

Through the incorporation of molecular data into the patient care

process, personalized medicine is drastically changing the healthcare

landscape; however, truly precise medicine has not been obtained.

Since completion of the human genome in 2003, the inclusion of

molecular data in medicine has improved our ability to make accur-

ate diagnoses, prognoses and treatment plans. Relying on large co-

horts limits the application of many of these techniques, however.

While inherited or acquired DNA polymorphisms provide powerful

insight in the pathogenicity of many Mendelian diseases and in can-

cer, a single-subject interpretation of the transcriptome may provide

insight and could be deployed in diseases incurred by other insults

than DNA damage or inheritable defects. Conventional transcrip-

tome analyses rely on multiple patient data that can mask idiosyn-

cratic signals from a single patient, and these approaches may lead

to treatments only effective for the ‘average’ patient. Gene-level ex-

pression signatures found in cross patient studies do not adequately

inform treatment plans for all cancer patients; therefore, there is a

need for better methods to understand the biological underpinning

at the single patient level.

In response to these issues, we developed a global computational

framework: N-of-1-pathways. N-of-1-pathways is founded upon

three principles: (1) single patient data represent the entire statistical

universe, (2) significance and interpretation are derived from gene-

sets (pathways), and (3) pathway level information is used to answer

questions of clinical importance. Principle 1 allows for detection of

individual signals that traditional cohort-level studies can overlook.

Principle 2 anchors the results in mechanism and this affords dimen-

sion reduction and interpretation. Principle 3 provides quantitative

and qualitative measures to address questions relating to patient

care. The first application of the N-of-1-pathways framework, the

N-of-1-pathways-Wilcoxon method (Gardeux et al., 2014a), suc-

cessfully predicted lung adenocarcinoma patient outcomes using

paired (normal and tumor) RNA-Seq samples from a single subject.

A follow-up study established it could accurately identify experi-

mentally deregulated pathway in ovarian and breast cancer cell lines

(Gardeux et al., 2014b). While the N-of-1-pathways-Wilcoxon iden-

tified deregulated pathways with a statistical relevant, it did not

quantify the magnitude of deregulation.

In this study, we extend and refine the N-of-1-pathways frame-

work by developing a novel application of Mahalanobis Distance

(MD) to create a ‘clinical relevance metric,’ (CRM) providing in-

sight on the magnitude of the deregulation in addition to the biolo-

gical significance. The design of N-of-1-pathways MD eliminates

the former’s reliance on ranks (e.g. Wilcoxon test), while producing

a measure of effect that is interpretable on the biological scale. We

employ breast cancer gene expression data to show increased sensi-

tivity while not increasing false positives in comparison to the

Wilcoxon approach. Finally, we utilize the CRM to predict breast

cancer survival.

2 Methods

2.1 Datasets and preprocessing
We used two datasets pertaining to breast cancer. Dataset I (GEO,

GSE51403; (Liu et al., 2014) allow us to assess false positive and

negative rate. Dataset II was used in a validation study (Table 1).

RNA-Seq counts of Dataset II were adjusted for ambiguous read as-

signment using the RNA-Seq by Expectation Maximization (RSEM)

software (Gautier et al., 2004; Li and Dewey, 2011). All measure-

ments for both datasets were taken as base-2 logarithms (log2) in the

course of normalization. If several probes were mapped to the same

HGNC gene name, the maximum expression value was retained as

the gene expression value and considered for further analysis (Povey

et al., 2001).

2.2 TCGA_BRCA patient exclusion criteria
Out of the 112 breast cancer patients with paired normal/tumor

samples in TCGA_BRCA, 80 were considered for the validation

analysis in this study. Patients were excluded from the study (i) who

died of noncancer causes in the first 12 months (defined as ‘tumor-

free’ or ‘unknown tumor recurrence status’), (ii) who are living

tumor-free with a clinical follow-up less than 12 months (not

enough time to assess recurrence risk), and (iii) if male (only 1 such

occurrence).

2.3 Geneset definitions and Gene Ontology annotations

of biological processes (GO-BP)
We aggregated genes into genesets (pathway) using the Gene

Ontology Biological Process, GO-BP (Ashburner et al., 2000; Gene

Ontology Consortium, 2010). Hierarchical GO terms were retrieved

using the org.Hs.eg.db package of Bioconductor (Gentleman et al.,

2004) available for R (R Development Core Team, 2011) statistical

software. We used the org.Hs.egGO2ALLEGS database (down-

loaded on 03/15/2013), which contains a list of genes annotated to

that GO term (geneset) along with all of its child nodes according

the hierarchical ontology structure.

2.4 N-of-1-pathways Mahalanobis distance: producing a CRM
N-of-1-pathways MD method consists of three core steps from input

to output that were performed. Figure 1 illustrates an overview of

the method.

2.4.1 Geneset (pathway) definition

For any given geneset, the paired expression values were restricted

to only the genes within the pathway (Fig. 1A). To afford

Table 1. Datasets

Dataset Description I Biological

replicate study

II Validation Study

Aim 1. Assess false

positive rate

1. Predict breast

cancer survival

2. Assess false

negative rate

Authors Liu Y, Zhou J, White KP NA

Source GEO, GSE51403 TCGA_BRCA

Disease Breast Adenocarcinoma Breast carcinoma

Data Download date Jan 2014 Dec 2014

Data type RNA-Seq RNA-Seq

Genomic platform Illumina HiSeq 2000 Illumina RNA-Seq V.2

Genes measured 22 336 20 501

Samples MCF-7 Cell line 80 Normal/tumora

Age median (range) NA 54 (30–90)

Disease stage I NA 17 (21.3%)

Disease stage II NA 40 (50.0%)

Disease stage III NA 20 (25.0%)

Disease stage IV NA 2 (1.25%)

aThere were 112 original paired samples, reduced to 80 after applying the

exclusion criteria (Section 2.2).
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Fig. 1. Method overview of N-of-1-pathways Mahalanobis Distance. (A) The input is represented by the gene expression of single patient paired samples (e.g.

tumor versus normal tissue) filtered into a priori defined genesets (e.g. Gene Ontology Biological Processes: GO-BP pathways). (B) Calculation I is visualized by

the bivariate relationship between normal and tumor gene expression values for a given geneset (e.g. GO-BP pathway). The vertical, signed Mahalanobis dis-

tance (MD), dj, is computed from each jth point (gene) to the diagonal line representing equal expression. (C) Calculation II: The mean MD represents the path-

way-level deregulation from normal to tumor expression where a negative value indicates down-regulation and a positive value represents up-regulation. The

gene indices are randomly resampled and the ‘average MD score’ is recomputed via bootstrapping (Chernick, 2008) to determine pathways with strong evidence

of deregulation. (D) Calculation III: The bootstrap distribution of ‘average MD scores’. (E) The process results in pathway-level quantification of deregulation, an

approach to obtain a Clinically Relevant Metric

Dynamic changes of RNA-sequencing expression i295



meaningful biological interpretation, genesets with at least 15 and

no more than 500 genes were used in this study.

2.4.2 Measure of deregulation and generation of the CRM

Pathway-level deregulation measurement is illustrated in Figure 1B.

All calculations involve only the expression of genes within the path-

way. Genes were indexed within a given pathway by j¼1, . . . ,m

and the log2-transformed normal and tumor expression values were

denoted as Nj and Tj, respectively. For each gene, we considered

no differential expression as the case where Tj¼Nj. As shown in

Figure 1B, the diagonal line Tj¼Nj provides a reference for calcula-

tion in quantifying differential gene expression. Then, for each jth

gene we computed the signed MD (Mahalanobis, 1936), dj, from

the point (Nj, Tj) to the diagonal line Tj¼Nj. This is based on the

distance from the point (Nj, Tj) to the point on the diagonal line of

equal expression, (Nj,Nj). Let the difference between the two points

be the vector Dx:

Dx ¼ Nj;Tj

� �
� Nj;Nj

� �
¼ 0;Tj �Nj

� �
: (1)

Also let the bivariate sample’s variance-covariance matrix be:

bR ¼ S2
N SNT

STN S2
T

 !
; (2)

where SN is the sample standard deviation of the Njs, ST is the sam-

ple standard deviation of the Tjs, and STN¼ SNT is their sample

covariance.

Now, denote the reciprocal of the variance–covariance matrix’s

determinant as:

d ¼ 1

S2
NS2

T � SNTð Þ2
: (3)

By definition, the squared, vertical, MD for gene j is the quadratic

form

d2
j ¼ ðDxÞTbR�1

Dx

¼ d 0 Tj �Nj

� � S2
T �SNT

�STN S2
N

0@ 1A 0

Tj �Nj

0@ 1A
¼ d Tj �Nj

� �2
S2

N SNT ¼ STNð Þ

¼ S2
N

S2
NS2

T � SNTð Þ2
Tj �Nj

� �2 ðusing 3Þ:

(4)

Then, the signed distance is

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
N

S2
NS2

T � SNTð Þ2

s
Tj �Nj

� �
(5)

The sign is taken to indicate the direction of deregulation: down-

or up-regulated pathway. Note that when the signed distance is sim-

ple Euclidean distance it is a log2 fold change. We opted to employ

the MD, which from the derivation above is seen to be a form of ad-

justed distance that accounts for the variance–covariance structure

of the paired samples.

Finally, after each dj is determined, we computed the unweighted

average of the distances, d, to provide a geneset-level summary stat-

istic of deregulation. This average is the CRM of pathway deregula-

tion, the mean MD score:

d ¼
Xm
j¼1

dj=m: (6) (CRM)

2.4.3 Assess certainty of the CRM via bootstrapping

To accumulate evidence that any observed difference is truly repre-

sentative of differential geneset deregulation, a bootstrap

distribution for d is calculated (Chernick, 2008). This is conducted

by randomly sampling with replacement indices from the geneset

under study and calculating a new, bootstrapped d�. Figure 1C

shows the measurements for a given pathway and indicates the gene

indices for resampling. Figure 1D depicts a bootstrap distribution

and marks the d¼0 reference line at which no deregulation occurs.

Figure 1E represents an example of an MD score, d, for each path-

way, along with its pathway description and direction of

deregulation.

Based on the bootstrap resample, we identify a pathway

as deregulated if the bootstrap distribution of d� separates com-

pletely from d¼0. That is, if all its d�s lie to a single side of the

d¼0 reference line, either upregulated ( d > 0 ) or down-regulated

(d < 0). To set the number of bootstrap resamples, we imitated a

technique often seen in multiple testing: we employed at least 1//J

resamples, where /J is a Sidak-adjusted /-level for comparing

J pathways at a pointwise level of / ¼ 0:01. This is 1//J¼
1/(1– (1–/)1/J)¼1/(1 – (0.99)1/J). For a prototypical collection of,

say, J¼5000 pathways, this gives 1/(1 – (.99)1/J)>497 496.3, so we

operated with 500 000 bootstrap resamples. Using 500 000 boot-

strap resamples, at least eight genes in the pathway are recom-

mended as to not frequently resample the same finite possibilities

(since 77 < 500 000).

2.5 Simulation study: assessing false-negative rate
To assess false-negative rate of the N-of-1-pathways MD method,

we performed a simulation study by creating synthetic genesets that

contain a percentage of concordant (all up) deregulated genes using

Dataset I (biological replicates of breast cancer cell lines). The intent

is to simulate deregulated pathways as described in our previous

work (Gardeux et al., 2014a) with some modifications. For each

gene, we assumed a negative binomial distribution and estimated

the mean and overdispersion parameters from the seven biological

replicates via the method of moments. Under our parameterization,

a negative overdispersion parameter indicates underdispersion for a

gene, which is anticonservative. Thus when underdispersion occurs,

we conservatively assumed that the variance equals the mean for

that gene. For a fixed set of simulation settings (n¼ genes in path-

way, r¼ ratio of deregulated genes in pathway, k¼ fold change), we

produced two synthetic ‘normal’ transcriptomes (two realizations

for each of the 22 336 genes measured). We then produced one arti-

ficially deregulated transcriptome by multiplying the gene mean by

k. Then a geneset of size n genes was randomly selected with that

genewise adjusted location parameter. We randomly indexed a sub-

set of size r from that geneset to retrieve the artificially deregulated

transcriptome. The remaining n� r genes were selected from the se-

cond normal transcriptome. We combined these two genes to create

a synthetic ‘tumor’ sample of size n with the correct amount of de-

regulation. We completed the synthetic pathway of paired gene ex-

pression by selecting the appropriate genes from the first normal

transcriptome. At each combination of (n, k, r), N-of-1-pathways

MD and Wilcoxon methods were executed 5000 times (imple-

mented in R, using the University of Arizona Extremely LarGe

Advanced TechnOlogy, ‘El Gato,’ computing system) (Fig. 2). For

the Wilcoxon method, a pathway is found deregulated when the

Bonferroni adjusted P<0.01. The proportion of times the pathway

is not detected as deregulated is the simulated false-negative error

rate.
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2.6 Biological replication study: assessing

false-positive rate
We assess the false-positive rate of the N-of-1-pathways MD

method via the biological replication study. We paired biological

replicates and identified GO-BP terms as deregulated using N-of-1-

pathways methodology. Agresti-Coull confidence intervals (Brown

et al., 2001) for the proportion of deregulated pathways found in

each sample in Dataset I were computed using the binom package in

R. If an interval had a lower bound less than 0, the lower bound was

replaced with 0 (Fig. 3). R package ggplot2 was used for visualiza-

tion (Wickham, 2009).

2.7 Principal component analysis of CRM
Principal component analysis (PCA) (Jolliffe, 2005) was executed on

the N-of-1-pathways MD pathway scores using the prcomp function

from the stats package in R. The PCA was performed using scores

from GO-BP terms that were found deregulated in at least one of the

80 patients in Dataset II (validation study); 2130 GO-BP terms were

selected.

2.8 Partitioning around medoids clustering of CRMs
Unsupervised clustering (Witten and Frank, 2005) of pathway scores

for the 2130 GO-BP terms found deregulated in at least one of the

80 breast cancer patients (Dataset II) was performed using the parti-

tioning around medoids (PAM) method (Kaufman and Rousseeuw,

1990) (via the cluster package in R) (Fig. 4).

2.9 Kaplan–Meier survival curve
Kaplan–Meier survival curves (Kleinbaum and Klein, 2005) were

computed via GraphPad Prism V.6.02 software using the survival

data associated with the breast cancer validation dataset (Dataset

II); see Figure 4. PAM-derived clusters were used to distinguish the

two survival curves (see Section 2.8).

2.10 Star plots of diametric extreme patients
Star plots were computed in R using the stars function in the default

graphics package (Fig. 5C). The stars plots display 15 pathways

chosen to discriminate between the patients who are disease-free

survival (DFS) longer than 4 years and the patients who suffer Death

Fig. 2. Simulation study reveals that N-of-1-pathways MD powerfully detects artificially deregulated pathways. Each point represents one size of a simulated path-

way generated by randomly selecting n genes and a ratio r of the deregulated genes within the pathway (Table 1 Dataset I, Section 2.6). The ratio r is artificially

increased by a k-fold change in a simulated pathway generated from biological replicates, (k¼ 1.5, 2, 4). We then applied separately the N-of-1-pathways-

Wilcoxon (bottom) and N-of-1-pathways-MD (top) methods to identify whether the truly deregulated pathway is detected. We repeated the process 5000 times at

each combination of (n, k, r) to estimate the false negative error rate (Wilcoxon P values were Bonferroni adjusted with a 1% threshold). AAC, area above the

curve, quantifies the proportion of simulated pathway combinations with false negative error less than 0.20 (the black curve labeled 0.20 is the reference for this

measure). Higher AAC indicates a greater number of scenarios with at least 80% power to detect deregulated pathways. N-of-1-pathways-MD outperforms N-of-

1-pathways-Wilcoxon at every fold-change, requiring fewer genes in the pathway and a smaller ratio of deregulated genes. Notably, the simulated false positive

rate (0.0% deregulated genes; rate along the horizontal axis) is smaller for MD than Wilcoxon, averaging 0.14 and 0.94%, respectively. This rate can also be inter-

preted as the simulated rate of discovery when two non-tumor samples are paired. Legend, Sim.¼ simulated, AAC¼ area above curve

Dynamic changes of RNA-sequencing expression i297



of Disease (DoD) in less than 2.5 years. The pathways were selected

by retaining the top largest absolute two-sample t statistic for each

GO-BP term. Once the pathways were chosen, each patient has an

individual star plot where each edge represents a particular GO-BP

MD CRM. In order to have a relevant representation of the star plot

surface, a biologist manually curated the pathways to a representa-

tive GO-BP category as shown in Figure 5B.

2.11 N-of-1 diametric extreme paired analysis and

comparison to GSEA, DEG 1 Enrichment
Using the diametric extreme phenotypes (Figure 5), we produced all

45 possible combinations of DFS>4 years patients (DFS, n¼9)

with DoD<2.5 years patients (DoD, n¼5). We applied the N-of-1-

pathways MD framework to these pairs of subjects in pursuit of

phenotypically deregulated pathways. To test against a conventional

approach, we identified differentially expressed genes (DEGs) using

the full cohort of diametric extremes via EBseq R package following

the suggested protocol (Leng et al., 2013). Then we performed gene-

set enrichment with those DEGs using Fisher’s Exact Test (FET) to

quantify the association of DEG status versus pathway inclusion.

We also applied standard gene set enrichment analysis (GSEA) on

the diametric extreme patients to detect deregulated GO-BP terms

(Subramanian et al., 2005). To validate the results, we compared the

detected pathways with an independent gold standard (GS) of 11

GO-BP terms determined through network models of 10 breast can-

cer survival studies (Chen et al., 2010). We summarize the overlap

and functional similarity between detected pathways from the three

methods and the GS in Table 2. Functional similarity between GO-

BP was determine at a conservative cutoff of 0.7 using information

theoretic similarity (ITS) methods we previously validated (Gardeux

et al., 2014a, b; Li et al., 2012; Regan et al., 2012; Tao et al., 2007).

3 Results

3.1 N-of-1-pathways MD identifies synthetically

deregulated pathways
We aimed to assess false-negative rates by designing a simulation

study using the RNA-Seq gene expression from biological replicates

of breast cancer cell lines (Dataset I). We extend our previous

Fig. 3. Evaluation of the false-positive rate of N-of-1-pathways MD compared to the Wilcoxon method. Pairs of biological replicates from breast cancer cell lines

were used (Table 1 dataset III). 3228 GO-BP genesets were tested for each pair of biological replicates to find falsely deregulated pathways using both the N-of-1-

pathways MD and Wilcoxon methods (Wilcoxon P values are Bonferroni adjusted and a 1% threshold is applied). Thin black lines are 95% pointwise Agresti-

Coull intervals for the proportion of false positives; bar heights are the percentage of falsely identified deregulated pathways. Nof 1-pathways MD performs

equally or better than Wilcoxon. Technical replicates showed similar results using GEO20194 (data not shown)

Fig. 4. N-of-1-pathways MD GO-BP clinical importance metrics predict breast

cancer patient survival. N-of-1-pathways MD was applied to n¼80 invasive

breast carcinoma patients (TCGA_BRCA, RNA-seq, Table 1 dataset II) resulting

in 3225 clinical importance metrics. Every patient has an N-of-1-pathways MD

score for each of the identified deregulated pathways (2130 pathways identified

in at least one patient) and we performed PCA and unsupervised clustering on

these scores. As shown in the figure, unsupervised PAM clustering reveals dis-

tinct Kaplan–Meier survival curves (log-rank test P<0.05). Additionally, the

identified pathways can also be used to discover a fully specified classifier for

good versus poor prognosis (Supplementary Table S5). Reducing dimensional-

ity further, we constructed the clusters based on only the top 10 scored path-

ways and produced distinct survival curves (Supplementary Figure S7). When

compared to gene expression, N-of-1-pathways performed similarly

(Supplementary Figure S1). We found that pathway-level scores relate to patho-

logically determined stage (Wilcoxon P value between first principal component

of MD Score¼0.02; data not shown), but did not identify receptor subtypes (ns;

principal components 1–5 verified; data not shown)
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simulation study by parametrically modeling RNA-seq counts using

the negative binomial distribution. We employ this simulation to

evaluate the predictive power of our N-of-1-pathways MD method

(Gardeux et al., 2014a). The N-of-1-pathways MD method is con-

sistently more powerful than Wilcoxon. Figure 2 shows that both

methods perform better as the pathway size and number of deregu-

lated genes increases. We quantify the scenarios that achieve greater

than 80% power (less than 20% false-negative rate) by measuring

the area above the curve (AAC). We note that N-of-1-pathways MD

outperforms the Wilcoxon method at every fold-change studied.

3.2 N-of-1-pathways MD slightly outperforms Wilcoxon

in false-positive rate
We evaluated the false-positive rate of the N-of-1-pathways MD

compared to its Wilcoxon counterpart (Figure 3). To this end, we

used Dataset I of 7 biological replicates from a breast cancer cell

line. The rationale adopted was that biological replicates derived

from the same breast cancer cell line should lead to similar gene ex-

pression profiles with minimal variation and, therefore, any genesets

found deregulated could be labeled as a false positive.

3.3 N-of-1-pathways MD predicts breast cancer survival
While breast cancer is often effectively treated, it is known for high

heterogeneity and predicting clinical outcomes remains a challenge.

We sought out to predict breast cancer survival using the N-of-1-

pathways MD scores from 80 women with paired RNA-Seq gene ex-

pression samples (Tumor and Normal) (Table 1; Section 2.7). We

observed large variation in the number of deregulated pathways

found. Using the MD CRM, the number of identified deregulated

pathways per patient ranged from 19 to 970 when screening 3225

Fig. 5. N-of-1-pathways representation (star plot) of individual GO-BPs of diametric extreme patients. The top 15 most discriminating GO-BP terms were identified

between the two groups of patients with diametric extreme phenotype (death of disease in less than 2.5 years, n¼5; at least 4 years of disease-free survival,

n¼9; Section 2.10). (A) GO terms manually curated to interpretable categories. (B) The legend of the star plots, each edge corresponding to one GO term, each

star reflects a single patient’s deregulation as measured by the MD CRM for each pathway. (C) A sample of eight patients’ star plots (four from each extreme).

The white zone represents upregulated pathways (given the N-of-1-pathways direction of deregulation), while the grey zone stands for downregulation. The circle

separating the gray and white areas represents nonderegulation (MD CRM¼ 0)

Dynamic changes of RNA-sequencing expression i299



GO-BP terms (average of 278 pathways per patient). The most com-

monly deregulated pathways across patients were related to cell div-

ision and cell cycle, known to be associated to cancer pathology

(Table 3). As a negative control, we investigated the distribution of

MD CRMs from pathways not identified in any of the patients. We

found that the 1095 unidentified pathway MD CRMs did not pro-

duce distinct Kaplan–Meier survival curves (log-rank P¼0.133;

data not shown). Delving deeper into the N-of-1-pathways MD

scores, we performed a PCA to distinguish diametric extreme pa-

tients (Supplementary Figure S4). We first identified all pathways

that were found deregulated in at least one patient. This allowed for

no individualized deregulation signal to be overlooked when

determining cohort-level trends. There were 2130 selected GO-BP

terms using this criterion; every patient has a CRM for each of these

pathways. The first component of these pathway scores did not dif-

fer between the diametric extreme patients (Wilcoxon P>0.2). We

then performed unsupervised clustering of the same N-of-1-path-

ways MD scores to predict survival among the 80 breast cancer

patients.

We used PAM clustering with two medoids to produce two clus-

ters of patients. The two clusters of patients showed a statistically

significant difference in survival (log-rank test P<0.05; Figure 4).

Additionally, vital status was associated with the clusters (Fisher’s

exact test P<0.01; data not shown).

Our exploration of the diametric extremes yields two key obser-

vations. The star plots display distinct, interpretable signals for DoD

less than 2.5 years (Figure 5) while the pattern for DFS greater than

4 years remains ambiguous. Secondly, N-of-1-pathways finds

phenotypic differences using only one subject per group. The pairing

of diametric extremes resulted in 45 applications of N-of-1-path-

ways. The number of detected pathways ranged from 36 to 756 for

the diametrically opposed pairs, averaging 161 pathways per pair.

Table 2 presents the most relevant pathways.

On the other hand, traditional geneset approaches were under-

powered in this setting. DEGs analysis (Leng et al., 2013) required

an false discovery rate (FDR) adjusted P value less than of 20% to

find 65 genes DEGs across the diametric extreme cohort (n¼14).

The following geneset enrichment found only one pathway enriched

at Fisher’s Exact Test FDR adjusted P<0.1. In total, 17 pathways

were found enriched at FDR 25%. None of these pathways were

related to the GS. GSEA yields only 4 pathways at FDR 25%, and

none of these pathways were related to our breast cancer gold stand-

ard (Subramanian et al., 2005).

4 Discussion

Rank-based, nonparametric approaches can suffer a decreased effi-

ciency compared to appropriately implemented bootstrap, random-

ization, and t-test procedures (Smucker et al., 2007). Further, the

Wilcoxon procedure we previously utilized assumes that the pairs

are chosen randomly and independently from a population. It is pre-

sumable that gene expression values do not satisfy this assumption.

We aimed to address these concerns via an evolution of our ap-

proach into the N-of-1-pathways MD method. Results from our ex-

ploration of TCGA breast cancer data show N-of-1-pathways MD

improves upon our earlier N-of-1-pathways Wilcoxon approach.

The success of the N-of-1-pathways framework for breast cancer

builds upon the insights developed in our previous investigation of

TCGA lung adenocarcinoma data (Gardeux et al., 2014b), as

TCGA data share similarity in data generation, storage, and format,

as well as other aspects. N-of-1-pathways MD continues to maintain

the practicality of self-contained geneset testing (Goeman and

Bühlmann, 2007). Additionally, the method provides a pathway-

level deregulation clinically relevant metric that is predictive of clin-

ical endpoints.

Our simulation study of the method’s ability to detect synthetic-

ally deregulated pathways indicates that N-of-1-pathways MD out-

performs N-of-1-pathways Wilcoxon. Its ability to identify entire

mechanistically interpretable pathways deregulated from subtly

DEGs is very powerful. This feature provides a strategy to assess the

notion that complex diseases may derive from multiple changes of

small effect that lead to larger phenotypic outcomes. Furthermore,

we note the signed nature of the N-of-1-pathways MD score that the

method cannot detect deregulated pathways that are not primarily

up- or downregulated. In other words, if a pathway has approxi-

mately equal numbers of genes above and below the line of equal ex-

pression, N-of-1-pathways MD would likely not identify the

pathway as deregulated. It is debatable whether such a specific form

of departure reflects true deregulation or simply a highly variable

pathway.

Table 3. Most commonly deregulated breast cancer pathways

among the 80 patients

GO-BP ID GO-BP terms Patient count

GO:0000236 Mitotic prometaphase 65

GO:0000216 M/G1 transition ofmitotic cell cycle 57

GO:0000280 Nuclear division 57

GO:0048285 Organelle fission 57

GO:0007059 Chromosome segregation 56

GO:0000087 M phase of mitotic cell cycle 56

GO:0003012 Muscle system process 55

GO:0007067 Mitosis 55

GO:0000075 Cell cycle checkpoint 54

GO:0006936 Muscle contraction 54

Table 2. N-of-1-pathways MD identifies phenotypically deregulated

pathways when conventional methods fail

GO ID Description Number of

Detections

Patient count

DFS DoD

0000280 Nuclear divisiona 31 9 5

0048285 Organelle fissiona 31 9 5

0007067 Mitosisb 30 9 5

0000236 Mitotic prometaphasea 28 9 5

0051301 Cell divisionb 27 9 5

0007017 Microtubule-based processb 26 9 5

0016568 Chromatin modificationb 26 9 5

Notes: Using the diametric extreme phenotypes (Figure 5), we produced all

45 possible pairs of DFS> 4 years patients (DFS, n¼ 9) with DoD <2.5 years

patients (DoD, n¼ 5). Within these pairs of diametrically opposed patients, the

gene-level log2 fold change centered around zero, indicating no systematic shift

in expression. We applied the N-of-1-pathways framework to these pairs in pur-

suit of phenotypically deregulated pathways. Displayed are the pathways de-

tected most often (found deregulated at least 25 times) in the 45 pairs that also

share functional information similarity with an independent gold standard (GS)

of 11 GO-BP terms (Section 2.11, (Chen et al., 2010). Every patient studied was

deregulation in this pathway (i.e. not just a few patients causing deregulation in

pairs). Note that DEGþ geneset enrichment and GSEA using all 14 diametric

extreme patients detected 18 and 4 pathways, respectively (FDR 25%); none of

these pathways were functionally related to the GS.
aPathway shared>0.7 ITS with a pathway in the gold standard.
bPathway was found in the gold standard.
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Our biological replicate analysis indicates N-of-1-pathways MD

produces slightly fewer false positives than Wilcoxon. There may be

some concern over the somewhat inflated rate of false positives for

certain samples. This might be attributed to true pathway

deregulation explained by measurement variability or some aspect

of the replication that led to unequal distribution of mRNA mol-

ecules. We note that this analysis is highly contingent on proper pre-

processing and normalization. Normalization is particularly

problematic in RNA-seq as many normalization techniques fail to

compensate for library size, gene length and guanine–cytosine con-

tent (Dillies et al., 2013). Notably, N-of-1-pathways did not

exhibit a bias towards longer median length of their genes

(Supplementary Figure S3, A), nor higher gene intensities within the

pathway (Supplementary Figure S3, B). However, there is a bias to-

wards detecting larger pathways as deregulated (Supplementary

Figure S3, C–D).

Applying N-of-1-pathways MD to breast cancer data results in

the discovery of sensible deregulated pathways and produces metrics

predictive of survival. This aspect validates the notion that N-of-1-

pathways MD not only provides a metric interpretable at the path-

way level, but also is related to important clinical endpoints. The

most commonly deregulated pathways (Table 3) are associated with

the hallmarks of cancer, including deregulation in DNA replication

and cell cycle. We also utilized the principal components of the MD

CRMs (Section 2.6) to identify clinical subtypes such as estrogen re-

ceptor (ER)þ and clinical metastatic stage. The former is not signifi-

cant (Wilcoxon P>0.08; PC1, data not shown); the latter is

significant (Wilcoxon P<0.05; PC1, data not shown). Additionally,

the breast cancer findings strengthen our previous indication that N-

of-1-pathways was predictive of lung adenocarcinoma survival,

demonstrating the robustness of our techniques for different cancer

types.

Survival prediction is possible from tumor gene expression alone

(Supplementary Figure S1), but the gene signatures may lack inter-

pretability and clinically actionable targets. N-of-1-pathways is de-

signed to first discover deregulated pathways at the individual

subject level followed by learning classifiers cross-subjects. In con-

trast, gene expression classifiers work directly on gene expression,

which may not be functionally deregulated at the individual subject

level as pointed out by Simon (2005). N-of-1-pathways also allows

for more power in discovering group comparisons at the pathway

level that traditional differential mRNA expression followed by en-

richment studies as summarized by Table 2.

N-of-1-pathways MD refines our Wilcoxon approach. We

acknowledged in our previous work that independence assumptions

of the N-of-1-pathways Wilcoxon signed-rank test were not met.

However, the fact that a predictive and interpretable signal was cap-

tured gave credibility to the N-of-1-pathways approach. N-of-1-

pathways MD improves over our previous work as it does not vio-

late any such statistical foundations. Careful readers may note that

we have avoided the notions of hypothesis testing and prefer the

term ‘identified pathways’ to ‘significantly deregulated pathways.’

The MD-deregulation criterion outlined in Section 2.4.3 provides a

metric to identify an up- or downregulated pathway, but does not

rely on the notion of a P value. We do retain the P values and associ-

ated multiplicity corrections for the Wilcoxon approach, in order to

faithfully replicate that methodology. Further study is required to

create a statistically complete approach.

The introduction of N-of-1-pathways MD provides many av-

enues for extension. The method can be adapted to more than paired

samples. Multiple samples could be obtained from within a tumor

and the pathway scores would measure intratumor heterogeneity.

Along the same vein, multiple samples could be obtained from a pa-

tient over time. Thus, the geneset scores would measure longitudinal

change in key pathways to predict response to therapy or to make

timely prescriptive decisions. Additionally, the N-of-1-pathways

framework could potentially provide a basis for improved small

sample normalization techniques. Or, additional ontological infor-

mation could be employed to weight genes within a pathway and re-

flect gene importance in biochemical dynamics. It remains to be

shown whether the patient-specific deregulated pathway(s) identi-

fied in the current study can be predictive and it will be addressed in

future studies. N-of-1-pathways can also be applied to various scales

of biology, e.g. DNA, methylation patterns, or microRNA

expression.

5 Conclusion

We hypothesized that creating a biologically relevant pathway-level

measure of effect will improve interpretability and detection

while maintaining statistical precision. We have established a novel

application of statistical MD, N-of-1-pathways MD, to quantify

geneset deregulation using gene expression data from paired samples

derived from a single subject. This study further validated our N-of-

1-pathway framework by predicting breast cancer survival from

the pathway-level metric of deregulation. We evaluated the precision

and accuracy of N-of-1-pathways MD and compared it to our

existing Wilcoxon approach. We found improvement in geneset

deregulation detection while not suffering increased false-positive

rates.

The modification of our approach is a pathway-level approach

to produce a CRM in single subjects and quantifying the deregula-

tion induced under the disease condition (e.g. tumor sample) for

each pathway (Shriner et al., 2014). In addition, we are currently

evaluating prospectively the method to predict future hospitalization

in a clinical trial.

N-of-1-pathways MD provides a practical approach towards

precision medicine. The method gives clinically actionable results

derived solely from the patient. The entire transcriptome does not

need to be measured, allowing for targeted experiments across mul-

tiple gene expression platforms, reducing cost and providing flexibil-

ity. The method generates the magnitude and the biological

significance of personal deregulated pathways results derived solely

from the patient’s transcriptome. These pathways offer an oppor-

tunity for applicability to diseases in which DNA changes may not

be relevant, and thus expand the ‘interpretable omics’ of single sub-

jects (e.g. personalome).
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